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Abstract A database of  mitochondrial DNA (mtDNA) 
hypervariable region 1 (HV1) and region 2 (HV2) se- 
quences of  the mtDNA control region was established 
f rom 162 unrelated Japanese individuals. The random 
match probability and the genetic diversity for this data- 
base were 0.96% and 0.997, respectively. Length hetero- 
plasmy in the C-stretch regions located around position 
16189 in HV1 and 310 in HV2 was observed in 37% and 
38% of the samples, respectively. A strategy using inter- 
nal sequencing primers was devised to obtain confirmed 
sequences in these length heteroplasmic individuals. This 
database, combined with other mtDNA sequence data- 
bases from the Japanese population, will permit the sig- 
nificance of mtDNA match results to be properly reported 
in mtDNA typing casework in Japan. 

Keywords  Mitochondrial DNA �9 Sequence database - 
Hypervariable region 1 (HV 1) �9 Hypervariable region 2 
(HV2) �9 Heteroplasmy 

Introduction 

PCR-based mtDNA typing has become widely estab- 
lished as a powerful tool in forensic science (reviewed in 
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Holland and Parsons 1999). Mainly because of a higher 
success rate for amplification compared to nuclear DNA 
typing, this technique is applied to highly degraded speci- 
mens such as bone, teeth, and hair samples. In addition to 
systematic validation studies including inter-laboratory 
studies (Fisher et al. 1993; Wilson et al. 1995; Carracedo 
et al. 1998), many successful identification cases have 
been reported (e.g. Sullivan et al. 1992; Holland et al. 
1993; Gill et al. 1994; Stoneking et al. 1995; Ivanov et al. 
1996; Lutz et al. 1996). Because the mtDNA molecule is 
a single linked unit, the significance of mtDNA matching 
in forensic cases requires comparison to large mtDNA se- 
quence databases, to determine the relative rarity of  the 
mtDNA type in question. Furthermore, there is strong ge- 
ographic and ethnic structure to mtDNA variation glob- 
ally and within Asian populations (Melton and Stoneking 
1996; Melton et al. 1997 a, 1997b). In recent years, many 
databases of  HV1 and HV2 sequences from the mtDNA 
control region have been published to permit mtDNA 
forensic casework in particular countries or geographic 
regions (e.g. Piercy et al. 1993; Lee et al. 1997; Sekiguchi 
et al. 1997; Parson et al. 1998; Lutz et al. 1998; Baasner et 
al. 1998; Pfeiffer et al. 1998, Rousselet and Mangin 1998; 
Seo et al. 1998; Budowle et al. 1999). The strength of 
mtDNA evidence that can be reported is very often lim- 
ited by the size of  the database available for comparison, 
as most mtDNA types are very rare, seen only a single 
time in even the largest databases yet compiled (Holland 
and Parsons 1999). For this reason, it is important that 
mtDNA sequence databases continue to be generated and 
published, to extend mtDNA typing capability to addi- 
tional populations and to increase the size of  existing 
databases. 

We report here a new database of mtDNA HV 1 and 
HV2 sequences from 162 randomly selected, unrelated in- 
dividuals from Japan and describe the general patterns of  
variation observed. Additionally, we describe an efficient 
strategy for obtaining confirmed sequence information 
from individuals that are length heteroplasmic in polycy- 
tosine stretches (C-stretches) in HV1 and/or HV2. Indi- 
viduals with C-stretch length heteroplasmy are difficult to 



sequence by standard chain terminat ion methods because 
the sequences of different templates become out of regis- 
ter once the length heteroplasmy is encountered by the se- 
quencing  polymerase (Bendall  and Sykes 1995; March- 
ington et al. 1997; Parson et al. 1998). It is important that 
m t D N A  typing laboratories be able to overcome this dif- 
ficulty on a routine basis. The database presented here 
will, in combinat ion  with other databases of the Japanese 
population,  contribute to the utility of forensic mtDNA 
testing in Japan. 

Materials and methods 

Samples and DNA extraction 

A total of 162 blood samples from unrelated Japanese individuals 
were obtained from random anonymous donors residing in Tokyo 
at an urban Tokyo blood bank and 10 ].tl of each was dropped onto 
cotton cloth. DNA was extracted from a half of each bloodstain us- 
ing the Chelex extraction method (Walsh et al. 1991). 

Polymerase chain reaction 

PCR was performed on 1 I.tl of each DNA extract. The two hyper- 
variable regions of mtDNA control region (HV1 and HV2) were 
each amplified in a total of 50 I.tl of PCR mix consisting of 0.4 p.M 
each primer, 1 x PCR reaction buffer (10 mM Tris-HC1, pH 8.3, 
50 mM KC1 and 1.5 mM MgC12), 200 [.tM each dNTP, 5 U Am- 
pliTaq DNA polymerase (Perkin Elmer) and 8 ~g BSA. The 
primers used are listed in Table 1. For HV1, F15971 and R16410, 
and for HV2, F15 and R389 were used for PCR. Amplification 
was carried out in a 9600 GeneAmp thermal cycler (Perkin Elmer) 
under the following conditions for both regions: 94~ for 30 s fol- 
lowed by 32 cycles of 94~ for 20 s, 56~ for 10 s and 72~ for 
30 s. After PCR, 5 p.1 of products was separated by electrophoresis 
on a 2% agarose gel for 30 min and PCR products were visualised 
by etbidium bromide staining followed by UV transillumination. 

Sequencing 

Prior to sequencing, PCR products were purified using Centricon- 
100 filtration units (Amicon). Depending on the band intensity of 
the PCR product on agarose test gels, 0.5-1.0 [.tl of purified prod- 
ucts were used for sequencing. Cycle sequencing was performed in 
a 9600 GeneAmp thermal cycler in a total reaction volume of 20 I.tl 
consisting of template amplicon, ABD Prism Dye Terminator Cy- 
cle Sequencing Ready Reaction kit with AmpliTaq DNA poly- 
merase, FS (Perkin Elmer) and 0.5 ~tM primers under the follow- 
ing condition: 25 cycles of 96~ for 15 s, 50~ for 5 s and 60~ 
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for 2 min. After the sequencing reaction, residual dye terminators 
were removed using AGCT columns (Edge BioSystems) and the 
products were dried in vacuum concentrator. The samples were 
run on an ABD 373 Stretch automated DNA sequencer, separated 
by electrophoresis on 6% (19:1 acrylamide:bisacrylamide) gels at 
a constant power of 28 W. DNA sequences were analysed by the 
ABI Prism Sequencing Analysis software (version 2.1) and con- 
sensus sequences were obtained semi-automatically using ABI Se- 
quence Navigator software (Ver. 1.0.1). Pairwise comparison of all 
sequences was performed using the MitoSearch program (C. Stauf- 
fer, FBI Laboratory). 

Confirmation of point heteroplasmy 

Samples that showed evidence of heteroplasmy via direct sequenc- 
ing were amplified a second time and sequenced using dye-labeled 
primers. Dye primer sequencing produces more uniform peak 
heights allowing better detection and characterisation of hetero- 
plasmic mixtures. Depending on the heteroplasmic position, ap- 
propriate tagged primers were selected for PCR (Table 1). PCR 
was performed in a total of 25 p.1 of PCR mix consisting of 0.5 ~tM 
each primer, 1 x PCR reaction buffer (10 mM Tris-HC1, pH 8.3, 
50 mM KC1, and 1.5 mM MgC12), 200 I.tM each dNTP and 1.25 U 
AmpliTaq Gold DNA polymerase (Perkin Elmer). Amplification 
was carried out under the following conditions: 95 ~ for 9 rain, 
followed by 33 cycles of 94~ for 45 s, 55 ~ for 30 s and 72~ 
for 2 rain. Dye primer cycle sequencing was carried out using 
BigDye Primer Cycle Sequencing FS Ready Reaction kits (-21M13 
and M13Rev., Perkin Elmer) according to the manufacturers instruc- 
tions. Sequencing products were separated on an ABD PRISM 310 
Genetic analyser. 

Criteria of DNA sequence determination 

DNA sequences were determined from position 16024 to 16365 in 
HV1 and from 73 to 340 in HV2 (Fig. 1). Sequences were con- 
firmed from both forward and reverse sequence data (Wilson et al. 
1993). For samples with length heteroplasmy in C-stretch regions, 
additional sequencing was performed using internal primers (R 16175 
and F16190 for HV1, R270 for HV2) to obtain sequence data fol- 
lowing the C-stretch in each direction. Even after performing this 
sequencing, short regions immediately adjacent to the C-stretch 
cannot be confh-med from both strands (Fig. 1). For these regions, 
a separate set of PCR and sequencing reactions was performed for 
confirmation using sequence information in the same direction, but 
from independent amplifications. 

Results and discussions 

A sequence database of the m t D N A  HV1 and HV2 re- 
gions was established from 162 randomly selected Japan- 

Table 1 Sequences of primers 
used for amplification and se- 
quencing. The lower four are 
primers used for dye primer se- 
quencing. The sequence indi- 
cated with lower-case letters is 
tag for-21 M13 forward or 
M13 reverse primers 

Primer Nucleotide sequence 

F15971 5' 
F16190 5' 
R16175 5' 
R16410 5' 
F15 5' 
R270 5' 
R389 5' 
F15978 (-21M13) 5' 
F16190 (-21M13) 5' 
R16188 (MI3 Rev.) 5' 
R16420 (M13 Rev.) 5' 

TTAACTCCACCATTAGCACC 
CCCCATGCTTACAAGCAAGT 
T G G A T T G G G ~ A T G T A  
GAGGATGGTGGTCAAGGGAC 
CACCCTATrAACCACTCACG 
TGGAAAGTGGCTGTGCAGAC 
CTGGTTAGGCTGGTGTTAGG 
tgtaaaacgacggccagtCACCATTAGCACCCAAAGCT 
tgtaaaacgacggccagtCCCCATGCTTACAAGCAAG 
caggaaacagctatgaccGGGGGTTFTGATGTG 
caggaaacagctatgaccTGATTTCACGGAGGATGGTG 

3 p 

3' 
3' 
3' 
3' 
3" 
3" 
3' 
3' 
3' 
3' 
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HV1 HV2 

16024 A 16189 16365 73 B 309 340 

F15971 . . . . . . . . . . . . . . . . .  'R16410F15~ ........................................................................................................................ R389 

A' a '  

F15971 ~ F15 
. . . . . . . .  . <  . . . . . . . . . . . . . . . . . . . . . . . . . .  

�9 ~ . . . .  R16175 ~ ii i / : i  ~ R16410 * ..................... R270 ~ . . . . . . .  

F16190 

! . , . . . . !  

: C-stretch 

: The region where confirmed both from forward and reverse sequencing 
: The region where confirmed from two sets of separated amplification and one directional sequencing 

Fig. l A ,  B Schematic representations of HV1 and HV2 region. 
Positions and primer names are shown. Directions of sequencing 
are indicated by arrows. A and B sequencing strategy for non-het- 
eroplasmic samples, A '  and B'  sequencing strategy for the samples 
containing length heteroplasmy at C-stretch region 

ese individuals residing in metropolitan Tokyo. Complete 
sequence information of the mtDNA types observed is 
shown in Table S 1; each sequence was compared with the 
reference sequence of Anderson et al. (1981) and substi- 
tuted bases are shown (these sequences have been incor- 
porated into a shared forensic mtDNA database, see Bu- 
dowle et al. 1999 and are currently in submission to Gen- 
Bank). A total of  140 different mtDNA types was ob- 
served of which 129 types were seen only once. Of  the 
11 types seen in multiple individuals, 6 were shared by 
2 individuals, 2 were shared by 3 individuals, 2 were 
shared by 4 individuals, and 1 was shared by 7 individu- 
als (Table 2). Such a distribution with a small number of  
common mtDNA types and a large number of rare mtDNA 
types is completely typical of  mtDNA population struc- 
ture. In this database, genetic diversity according to Tajima 
(1989) and random match probability (RMP) according to 
Stoneking et al. (1991) were estimated as 0.996 and 
0.96%, respectively. The average number of  polymorphic 
differences between individuals in the database is 8.8. 
Comparison of all possible sequence pairs gave 45 matches 
out of 13,041 comparisons, for an empirical random match 
frequency of one in 290. 

We can combine our data with two previously pub- 
lished Japanese mtDNA sequence databases (100 individ- 
uals: Seo et al. 1998, 55 individuals Sekiguchi et al. 1997) 
for a total of  317 Japanese sequences. For the regions 
common to all three databases, from position 16051 to 
16365 in HV1 and from 73 to 340 in HV2, there were 262 
different mtDNA sequence types and 233 types that oc- 
curred only once in the combined database. Of  the 29 
types present in multiple individuals, 17 were shared by 
2 individuals, 8 were shared by 3 individuals, 2 were 
shared by 5 individuals, 1 was shared by 6 individuals, 
and 1 was shared by 10 individuals (Table 2). Genetic di- 

Table 2 Frequency distribution of mtDNA types in the Japanese 
database 

Number 
of times 
observed 

This study Combined database a 

Number of Total Number of Total 
mtDNA types mtDNA types 

1 129 129 233 233 
2 6 12 17 34 
3 2 6 8 24 
4 2 8 0 0 
5 0 0 2 10 
6 0 0 1 6 
7 1 7 0 0 

10 0 0 1 10 
Total 140 162 262 317 

aResults from combined Japanese database with Sekiguchi et al. 
(1997) and Seo et.al. (1998) 

versity and RMP were estimated as 0.998 and 0.56%, re- 
spectively. This low RMP value is similar to that of  the 
US Caucasian population estimated from a large sample 
size (N = 604) (Budowle et al. 1999). Comparison of  all 
possible sequence pairs (50,086 pairs) gave 121 matches, 
for an empirical random match frequency of one in 414. 

Length heteroplasmy in C-stretch regions was ob- 
served both in HV1 and HV2. In HV1, 37% (60/162) of  
samples showed length heteroplasmy in the C-stretch re- 
gion. Length heteroplasmy was easily identified because 
of the dramatic decrease in sequence quality that occurs 
beyond the heteroplasmic region, due to template mole- 
cules that are out of  register (Parson et al. 1998). More- 
over, all of  these samples contained a T to C transition at 
position 16189. This creates an unbroken series of  10 or 
more Cs that is apparently replicated with poor fidelity 
within mitochondria. This effect of  HV1 length hetero- 
plasmy is pronounced and we agree with other authors 
that it is not possible to identify a predominant length 
variant within the mixture from only the direct sequencing 
electropherograms (Parson et al. 1998). 



71 

T " T G T T A T G A T G T I 

T T T G T T A T N A T N T  

% 7' 

T T T N T T N T A A tt T T 

P 

r T 

"Fig. 2 A-C Electropherograms showing different degrees of mixed 
peaks in HV2 (reverse sequencing) due to variable degrees of C- 
stretch length heteroplasmy. A no detectable heteroplasmy (one of 
the type JP135), B discernable heteroplasmy (type JP029), C pro- 
nounced heteroplasmy (type JP058). Signal coming from the pre- 
dominant length variant is labeled "P" and corresponding signal 
coming from alternative longer and shorter variants is indicated by 
a r r o w s  

In contrast to HV1, the degree of length heteroplasmy 
varies among individuals in HV2 (Marchington et al. 
1997) such that a predominant variant can often be called 
even when some length heteroplasmy is apparent. In other 
cases, the length-variant mixture involves two or more 
prevalent components, and greatly disrupts further sequence 
resolution beyond the region (Fig. 2). We observed that in- 
dividuals with only seven Cs in this region as a rule did 
not manifest length heteroplasmy, while those C-stretches 
of  eight or more Cs tended to have heteroplasmic mix- 
tures. Because the heteroplasmic ratios vary greatly from 
sample to sample (ranging from no detectable hetero- 
plasmy, to barely discernible, to pronounced) it is difficult 
to state the total number of samples heteroplasmic for 
HV2. However, we estimated that HV2 length hetero- 
plasmy was noticeably observed in 61/162 individuals 
(38%). Virtually all of these were within the subset of  in- 
dividuals who had eight or more Cs prevalent in the HV2 
C-stretch (90/162 individuals or 56%). As with HV1, ad- 
ditional amplification and sequencing with an internal 
primer (R270) was required for double-strand confirma- 

16287 

A C  crr T A  

Fwd. 

T A NG G T 

Rev. 

Fig.3 Electrophenograms obtained by dye primer cycle sequenc- 
ing (type JP049). The mixed peaks were clearly observed both in 
forward (Fwd.) and reverse (Rev.) sequencing 

tion in cases where length heteroplasmy significantly re- 
duced base-calling accuracy. 

We also observed four instances of  heteroplasmic point 
mutations within HV 1, adding to a growing number of  re- 
ports of  control region point mutation heteroplasmy de- 
tected by direct sequencing (Gill et al. 1994; Comas et al. 
1995; Bendall et al. 1996; Marchington et al. 1996; Ivanov 
et al. 1996; Wilson et al. 1997; Bendall et al. 1997; Htihne 
et al. 1998; Parson et al. 1998). Once the point hetero- 
plasmy was identified, samples were subjected to dye 
primer cycle sequencing. The presence of heteroplasmy 
was confirmed by careful examination in both the forward 
and reverse directions, with a consistent mixed signal well 
above background levels (Fig. 3). Heteroplasmic positions 
were designated according to the IUB code. The positions 
of heteroplasmy observed are as follows: 16093 Y; 16172 Y; 
16197 S; 16287 Y. Position 16093 is known to be an ex- 
treme hotspot for C/T heteroplasmy, but often at levels 
that are undetectable by direct sequencing (Tully et al. 
2000). Position 16172 is known to have a high rate of 
evolutionary substitution whereas 16197 and 16287 have 
relatively low evolutionary rates (Wakeley 1993; Meyer 
et al. 1999; Excoffier and Yang 1999). 

In this study, we established a Japanese mtDNA se- 
quence database of  HV1 and HV2 regions for 162 indi- 
viduals. This data is now available for use in assessing the 
significance of matches in mtDNA forensic casework in 
Japan, as well as for population and evolutionary analy- 
ses. The data has been generated under strict criteria for 
confirmation, requiring unambiguous base calls from both 
strands. For the specific instances where that was not pos- 
sible - for example, immediately adjacent to length-het- 
eroplasmic C-stretches - confirmation was made by mul- 
tiple unambiguous calls made from the same strand, but 
from different PCR amplifications of the same sample. 
We feet it is important to maintain high standards of  se- 
quence determination not only in forensic casework, but 
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in maintenance  of databases as well. Cont inued establish- 
ment  and publ icat ion of high-quali ty mtDNA sequence 
databases from diverse populat ions will abet the expand- 
ing role of m tDNA typing in forensic casework. 
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